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Fig. 7. S-parameters for multilayered capacitor.

An important part of the modeling procedure was the interface of
the 3-D model for the SMD’s with the surface-current model of
the metallizations forming the planar circuit. Using this method, we
investigated homogeneous and multilayered SMD capacitors within
a microstrip circuit. For the homogeneous capacitor, we could not
observe any resonances, although the shortest wavelength in the
dielectric was shorter than the length of the capacitor. For the
multilayered capacitor with larger capacitances, we found resonances
with frequencies dependent on the capacitance values.
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TM Scattering from Hollow and Dielectric-Filled
Semielliptic Channels with Arbitrary

Eccentricity in a Perfectly
Conducting Plane

W. J. Byun, J. W. Yu, and N. H. Myung

Abstract—The behavior of TM wave scattering from hollow and
dielectric-filled semielliptic channels in a perfectly conducting substrate
is investigated. The scattered field is represented in terms of an infinite
series of Mathieu functions with unknown coefficients. By applying
the separation of variables and employing the partial orthogonality of
the first-kind angular Mathieu functions, the unknown coefficients are
obtained. Numerical results are given for the scattered-field patterns by
the channels with different eccentricities and permittivities.

Index Terms—Electromagnetic scattering, Mathieu functions, semiel-
liptic channel.

I. INTRODUCTION

A considerable number of investigations have been performed
on the radar cross section (RCS) analysis for the geometries with
channels, grooves, and cracks in a perfectly electric conducting (PEC)
substrate. This is due to the fact that these local guiding structures
may excite internal resonances, and they sometimes yield scattering
contribution which cannot be obtained with other ordinary geome-
tries. The electromagnetic scattering effect from a square groove
in a PEC substrate has been treated in [1] and a semicircular one
treated in [2]–[4]. However, a scattering solution is not available for
semielliptic channels in a PEC substrate. In this paper, TM scattering
from semielliptic channels is solved with different eccentricities
and permittivities in a PEC plane by employing the separation of
variables and mode-matching method. In elliptic cylinder coordinates,
separation of variables leads to Mathieu’s equation, which has
solutions in the form of Mathieu functions [5]. Although the familiar
orthogonality relationships at the interface cannot be applied for the
scattering problem of dielectric-filled geometries, an analytic-series
solution to electromagnetic scattering by dielectric-filled semielliptic
channels is presented in this paper.

II. FIELD REPRESENTATIONS

The problem is formulated with respect to elliptic cylinder coordi-
nates� and � wherex = d; cosh �; cos �, y = d; sinh �; sin �,
and d is the semifocal distance in Fig. 1. The semielliptic inter-
face between Regions I and II is represented by the relation�0
(e = 1=cosh �0 = d=a). The eccentricitye is represented by
1� (b=a)2, and a and b are semimajor and semiminor axis,

respectively. The normalization factors adopted by Ince [6] are used,
and Mathieu functions are computed using the algorithms in [7].
Throughout this paper, theej!t time–harmonic factor is assumed
and suppressed. TheTMz plane wave impinges on a dielectric-
filled semielliptic channel in a PEC substrate at the incident angle
of �i with respect to thex-axis, as shown in Fig. 1. The semielliptic
channel has a wavenumberk1(= !

p
�0�0�r). When the incident

wave impinges on the channel in a PEC substrate, a surface scattering

Manuscript received August 1, 1997; revised January 26, 1998.
The authors are with the Department of Electrical Engineering, Korea

Advanced Institute of Science and Technology (KAIST), Taejon 305-701,
Korea (e-mail: nhmyung@eekaist.kaist.ac.kr; bwj@cais.kaist.ac.kr).

Publisher Item Identifier S 0018-9480(98)06156-0.

0018–9480/98$10.00 1998 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 46, NO. 9, SEPTEMBER 1998 1337

Fig. 1. Geometry of a dielectric-filled semielliptic channel in a PEC sub-
strate.

process takes place, resulting in scattered, specularly reflected, and
transmitted fields.

In Region I (� > �0, 0 < � < �), the total field may be
decomposed into three parts: the incident, specularly reflected, and
scattered fields [8]. The incident and specularly reflected fields are
represented by

Ei

z(�; �) =

1

n=1

2(j)nMs(1)n (�; q0)sen(�; q0)sen(�i; q0)

+

1

n=0

2(j)nMc(1)n (�; q0)cen(�; q0)cen(�i; q0) (1)

Er
z (�; �) = � Ei

z(�; �) with �i ! 2� � �i (2)

whereqi = (kiae)
2=4 for i = 0, 1, andk0 is the wavenumber in free

space. The even and odd angular Mathieu functions of ordern and
the first kind are denoted bycen(�; qi) andsen(�; qi), respectively.
Mc

(s)
n (�; qi), Ms

(s)
n (�; qi) for s = 1 and 2 are the even and odd

radial Mathieu functions of thesth kind. The scattered field in Region
I may be given by imposing boundary conditionEs

z = 0 on the PEC
substrate sincesen(�; q0) = 0 at � = 0 and�, and it is represented

by

Es
z(�; �) =

1

n=1

AnMs(4)n (�; q0)sen(�; q0) (3)

whereMs
(4)
n (�; q0) is the Mathieu function which corresponds to

the Hankel function of the second kind in circular cylindrical coor-
dinates and has the relationship ofMs

(4)
n (�; q0) = Ms

(1)
n (�; q0)�

jMs
(2)
n (�; q0). Then, the total field in Region I is represented by

EI
z (�; �) =Ei

z(�; �) + Er
z (�; �) + Es

z(�; �)

=

1

n=1

4(j)nMs(1)n (�; q0)sen(�; q0)sen(�i; q0)

+

1

n=1

AnMs(4)n (�; q0)sen(�; q0): (4)

In Region II (� < �0, 0 < � < 2�), the transmitted electric field
may also be represented as

EII
z (�; �) =

1

n=0

BnMc(1)n (�; q1)cen(�; q1)

+

1

n=1

CnMs(1)n (�; q1)sen(�; q1): (5)

From Maxwell’s equations, the�-components of the magnetic field
may be represented as

HI(II)
� (�; �) = �

j

!�0L

@E
I(II)
z

@�
(6)

whereL = d cosh2 � � cos2 �. In (3)–(5),An, Bn, andCn are
unknown coefficients to be determined with the boundary conditions
at � = �0 of zero tangential electric field on the channel(� < � <
2�) and field continuity across the aperture(0 < � < �). Applying
the orthogonality condition of the angular Mathieu functions and
eliminating Cn, the simultaneous equations, shown in (7)–(14), at
the bottom of this page, can be obtained in terms ofAn andBn for
m � 1, wherep = 1, 4. The prime in the above equations denotes
the derivative with respect to�. In the case of a hollow channel,

1

n=0

BnV c
(1)
mn(�0; q1)Xmn �

1

n=1

AnV s
(4)
mn(�0; q0)Zmn

=

1

n=1

4(j)nV s(1)mn(�0; q0)sen(�i; q0)Zmn (7)

1

n=0

Bn Uc(1)mn(�0; q1)Xmn �Mc(1)n (�0; q1)Ymn �

1

n=1

AnUs
(4)
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1
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Fig. 2. Normalized backscattered field versusk0a for a hollow semielliptic
channel (k1 = k0, �i = � = 90

�).

q1 = q0 andZmn = (�=2)�mn, where�mn is the Kronecker delta,
and (7) and (8) can be reduced to

1

n=0

BnWmn(�0; q0)Xmn

= 2�(j)mQmn(�0; q0)sem(�i; q0) �mn (15)

Am
�

2
V s(4)mn(�0; q0) �mn

=

1

n=0

BnV c
(1)
mn(�0; q0)Xmn

� 2�(j)mV s(1)mn(�0; q0)sem(�i; q0) �mn (16)

Wmn(�0; q0) =Mc(1)n (�0; q0) + Uc(1)mn(�0; q0)

�

Us
(4)
mm(�0; q0)

V s
(4)
mm(�0; q0)

V c(1)mn(�0; q0) (17)

Qmn(�0; q0) =Us(1)mn(�0; q0)

�

Us
(4)
mn(�0; q0)

V s
(4)
mn(�0; q0)

V s(1)mn(�0; q0): (18)

The infinite series involved in the solution are convergent, and this
makes it possible to truncate after a certain number of terms to
determine the unknown coefficientsAn, Bn, andCn.

III. FIELD COMPUTATION

To check the accuracy and convergence of the formulation devel-
oped in this paper, the numerical results of the normalized scattered-
field magnitudejF (�; q0)j are calculated and compared with those
of a semicircular channel [3]. The formulations for the scattered far
field as a function of� are given by [9]

Ms(4)n

�!1
'

2

�k0d sinh �
e�j(k d sinh ��((2n+1)�=4)) (19)

d sinh �
�!1
' �

Es
z(�; �)

�!1
'

2

�k0�
e�j(k ��(�=4))F (�; q0) (20)

F (�; q0) =

N

n=1

(j)nAnsen(�; q0):

A plot of the normalized scattered-field magnitudejF (�; q0)j versus
k0a for a hollow channel at normal incidence is shown in Fig. 2
for four different eccentricities. As one can see from Fig. 2, the

Fig. 3. Normalized backscattered field versusk0a for a dielectric-filled
channel (�r = 3, �i = � = 90

�).

Fig. 4. Scattered field versus scattering angle� for a semielliptic channel
(k0a = 2�, �i = 60

�).

scattered field for thee = 0:01 case agrees well with that of
a semicircular channel, which can be considered as the limiting
geometry of the semielliptic one. Although the scattered field for
the different eccentricities shows similar patterns,k0a for maximum
and minimum points of scattered-field magnitude increases as the
eccentricity increases. This implies thatk0a, which corresponds to the
cutoff wavenumber of the elliptic waveguide, increases as eccentricity
increases [10]. Fig. 3 shows the behavior ofjF (�; q0)j versusk0a
for the four different eccentricities with normal incidence and"r = 3.
From Fig. 3, it is seen that a presence of the dielectric loading tends
to decrease the period of the resonance versusk0a. The effect of
increasing the eccentricity is the same as that of Fig. 2. In Fig. 4,
jF (�; q0)j is plotted versus the scattering angle� with �i = 60�,
k0a = 2�, and "r = 1; 4. It is noted that the main lobes exist at
the forward directions and their magnitudes and directions depend on
eccentricities. It is also worth noting thatAn = Bn = 0 from (15)
and (16) sinceMs

(1)
n (0; q0) = Qmn(0; q0) = V s

(1)
mn(0; q0) = 0

from (9), (10), and (18) in the case ofe = 1(�r = 1). Therefore, the
simple reflection of a plane wave incident on the PEC infinite plane
is obtained from (4). In Fig. 5(a), the behavior ofjEz(�; �)j in the
neighborhood of the hollow channel is plotted for�i = 90�; �r =
1; e = 0:5, andk0a = 4:28 corresponding to the cutoff wavenumber
of the oddTM11 mode [10], [11]. The same plot is repeated in
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(a)

(b)

Fig. 5. Equiamplitude contour plots ofjEz(�; �)j near: (a) a hollow semiel-
liptic channel (k0a = 4:28, �r = 1, e = 0:5, �i = 90�) and (b) a
dielectric-filled channel (k0a = 1:42, �r = 9, e = 0:5, �i = 90�).

Fig. 5(b) for �i = 90
�, �r = 9, e = 0:5, and k0a = 1:42. The

field pattern inside the channel is similar to the oddTM11 mode.
From Fig. 5(a) and (b), it is seen that the boundary condition on the
conducting plane is satisfied.

IV. CONCLUSION

An analytic-series solution based on the mode-matching method
for hollow and dielectric-filled semielliptic channels is introduced
in this paper. The validity and accuracy of the numerical results
are examined by comparing the scattered-field pattern with those of
the semicircular channels, which can be considered as the limiting
geometry of the semielliptic one. The resonances in surface scattering
with the semielliptic channels are seen to depend not only on the
size of the channel and permittivity of the dielectric loading, but on
the eccentricity. In addition, the scattered-field pattern depends very
much on the eccentricity of the semielliptic channels.
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Efficient Parameter Computation of 2-D Multiconductor
Interconnection Lines in Layered Media by Convergence

Acceleration of Dielectric Green’s Function via
Padé Approximation

Ji Zheng and Zhengfan Li

Abstract—In this paper, a novel method is presented for calculation of
the capacitance matrix of two-dimensional (2-D) interconnection lines em-
bedded in layered dielectric media. In this method, Pad́e approximation
is used to accelerate the convergence of Green’s function, which leads
to obvious improvements of computational efficiency for interconnect
parameters. The obtained results show good agreement with those in
previous publications.

Index Terms—Capacitance, Green’s function, interconnections.

I. INTRODUCTION

Today, with increasing integration scale and clock frequency, the
major limiting factors for further increasing the operating speed of
integrated circuits (IC’s) are interconnection delay and crosstalk,
rather than the device switching speed. Parameter extraction for
interconnects is a key step in the analysis of such delay and crosstalk
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